Brief introduction to lithium battery diaphragms

In the structure of lithium batteries, battery separator refers to a layer of separator material between the positive and negative electrodes of the battery. It is a very critical part of the battery and has a direct impact on the safety and cost of the battery. Its main function is to isolate the positive and negative electrodes and prevent the electrons in the battery from passing freely, so that the ions in the electrolyte can pass freely between the positive and negative electrodes. The performance of the separator determines the interface structure and internal resistance of the battery, which directly affects the battery's capacity, cycle and safety performance. According to the differences in physical and chemical properties, lithium-ion battery separators can be divided into several categories: woven membranes, non-woven membranes (non-woven fabrics), microporous membranes, composite membranes, separator paper, rolled membranes, etc. Although there are many types, the main commercial lithium-ion battery separator materials are polyethylene and polypropylene microporous membranes. Polyolefin materials have excellent mechanical properties, chemical stability and relatively low prices. Therefore, polyolefin microporous membranes such as polyethylene and polypropylene have been used as lithium-ion battery separators in the early stages of lithium-ion battery research and development.

One of the ten key equipment for lithium batteries: Double Planetary Mixer pulping equipment

The mainstream mixing equipment used by lithium-ion battery manufacturing companies is the Double Planetary Mixer. The Double Planetary Mixer used in the lithium battery industry, also known as the PD Mixer, is equipped with low-speed stirring components (Planet) and high-speed dispersing components (Disper). The low-speed stirring components consist of two curved frame-type stirring blades, driven by planetary gears. As the blades revolve, they also rotate on their own axis, causing the material to move both vertically and horizontally, achieving the desired mixing effect in a short time. The high-speed dispersing components typically consist of toothed dispersing discs, which revolve in sync with the planetary frame, while also rotating at high speed. This creates intense shear and dispersion forces on the material, making it several times more effective than ordinary mixers. The dispersing components can be configured with either a single dispersing shaft or double dispersing shafts.

Adjustable film coater

Adjustable film coater is a film coater with adjustable coating thickness. By adjusting the two differentiators above the film coater, the scraper below can be adjusted up and down to control the coating gap and ultimately achieve the desired coating thickness.

Due to the use of a high-precision micrometer, the coating range is adjustable from 0 to 3500μm, and the gap of the scraper is adjusted in units of 10 microns during scraping.

This film applicator is ideal for research projects where even the smallest differences in film thickness need to be accurately evaluated.

The basic configuration of button batteries: Small Hydraulic Button Cell Sealing Machine

1. Vacuum mixer

SFM-7

It is used for stirring and shaking materials; it has high vacuum degree, strong stirring force and adjustable vibration amplitude. It is a dual-purpose machine with great value for money.

 

2. Digital Rotational Viscometer

SNB-2-H

A new digital product developed based on single-chip microprocessor technology and used to measure the viscous resistance and absolute viscosity of liquids.

 

3. Automatic coating and drying machine

MSK-AFA-III

Applicable to various high-temperature coating research. Ceramic thin films, crystal thin films, battery material thin films, special nano thin films. This product is equipped with a heating and drying system, and the materials are dried synchronously.

 

4. 52L vacuum drying oven

DZF-6050

Suitable for heating and drying items under vacuum conditions. Accurate temperature control, high precision; temperature control range from room temperature to 250 degrees; volume 52 liters.

A new generation of lithium-ion battery negative electrode material - silicon dioxide!

Due to the rapid development of lithium-ion batteries, people's daily life and production methods have undergone tremendous changes. At present, lithium-ion batteries are needed in everything from laptops, tablets, cameras, mobile phones to new energy vehicles, and lithium-ion battery products have spread to every corner of people's lives.

Lithium Titanate (LTO)

Among many battery technologies, lithium titanate batteries stand out for their excellent safety and are considered the safest type of battery currently. This article will explore the characteristics of lithium titanate batteries in depth and analyze why they are superior to other battery technologies in terms of safety.

Graphite(Li-ion)

Lithium-ion batteries (LiBs) provide power for electric vehicles (EVs), and the anode plays a crucial role in their performance. Graphite materials, with excellent conductivity, thermal stability, and high performance, are the primary anode materials for lithium-ion batteries.

Graphite has become the earliest commercialized negative electrode material for lithium-ion batteries due to its advantages such as high electronic conductivity, large lithium ion diffusion coefficient, small volume change before and after lithium insertion in its layered structure, high lithium insertion capacity (theoretical capacity can reach 372mA·h/g), and low lithium insertion potential.

Introduction and Synthesis of Lithium Ion Batteries Negative Material

  Introduction and Synthesis of Lithium Ion Batteries Negative Material At present, the negative materials used in lithium-ion batteries are...