Skip to main content

The commercialization of all-solid-state battery production



The commercialization of all-solid-state battery production is a complex system engineering process, with its core mainly consisting of three key components: material system development, cell structure design, and cell production control. To produce a high-performance commercial all-solid-state battery, it is essential to master these three core aspects. Once the process for manufacturing commercial all-solid-state batteries is mastered, assembling and producing coin-type half-cells, coin-type full-cells, and simple structure flexible batteries (with a single positive/negative electrode stacked structure) becomes relatively easy.

































Canrd Brief Introduce
Canrd use high battery R&D technology(core members are from CATL) and strong Chinese supply chain to help many foreign companies with fast R&D. We provide lab materials, electrodes, custom dry cells, material evaluation, perfomance and test, coin/pouch/cylindrical cell equipment line, and other R&D services.

Email: contact@canrd.com    Phone/Wechat/WhatsApp: +86 19867737979
Canrd Official Web     Canrd Company Vedio     Canrd Company profile
Website : www.canrud.com


Comments

Popular posts from this blog

Lithium-ion Full Battery Manufacturing Process Training

Lithium-ion Full Battery Manufacturing Process Training 1. Basic Knowlege Of Mixing Slurry mixing is the process of adding active materials, conductive carbon black, dispersants, binders, additives, and other components to a mixing equipment in a certain proportion and order. Under the mechanical actions such as turning, kneading, and shearing generated by the equipment, these components are mixed together to form a uniform, stable solid-liquid suspension system suitable for coating.The goal is to achieve uniformity and consistency on both the macro and micro levels.

Lithium-ion Full Cell Manufacturing Process Training--Soft-Pack Battery Formation - Part 2

1.  Key Factors Influencing Formation: Mechanism Generation Process of SEI Membrane: l  Electrons are transferred from the current collector, through the conductive agent, to point A inside the graphite particles where the SEI membrane is to be formed. l  Solvated lithium ions, wrapped in the solvent, diffuse from the cathode to point B on the surface of the SEI membrane that is currently being formed. l  The electrons at point A diffuse to point B through the electron tunneling effect. l  The electrons that jump to point B react with lithium salt, solvated lithium ions, film-forming agents, etc., to continue generating the SEI membrane on the surface of the existing SEI membrane. This process results in the continuous increase of the SEI membrane thickness on the surface of the graphite particles, ultimately leading to the formation of a complete SEI membrane.

On the Technology and Market of Lithium-Ion Battery Electrolytes

Lithium-ion battery overview Lithium-ion battery is a secondary battery. Its working principle is: during the charge and discharge process, lithium ions are in a state of movement from positive electrode → negative electrode → positive electrode. During the charge and discharge process, lithium ions are intercalated and deintercalated back and forth between the two electrodes. That is, during charging, lithium ions are deintercalated from the positive electrode and intercalated into the negative electrode through the electrolyte, and the negative electrode is in a lithium-rich state. The opposite is true during discharge. Lithium-ion batteries are complex systems consisting of positive electrode materials, negative electrode materials, electrolytes , separators, conductive agents, binders and packaging materials. Due to their high operating voltage, high specific energy density, long cycle life and wide operating temperature range, lithium-ion batteries have been widely used in new ene...